Received 7 December 2004 Accepted 16 December 2004

Online 8 January 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander J. Blake^a* and Vito Lippolis^b

^aSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England, and ^bDipartimento di Chimica Inorganica ed Analitica, Università degli Studi di Cagliari, S.S. 554, Bivio per Sestu, 09042 Monserrato (CA), Italy

Correspondence e-mail: a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.006 Å Disorder in solvent or counterion R factor = 0.069 wR factor = 0.205 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. [1-(3-Aminopropyl)-4,7-dithia-1-azacyclononane- $\kappa^4 N, N', S, S'$]bis(dimethylformamide- κO)nickel(II) bis(tetraphenylborate) acetonitrile disolvate

In the title complex, $[Ni(C_3H_7NO)_2(C_9H_{20}N_2S_2)](C_{24}H_{20}B)_2$ -2CH₃CN, the metal centre has a distorted octahedral environment, with four coordination sites occupied by two N- and two S-donor atoms from a 3-aminopropyl pendant arm derivative of the nine-membered macrocycle 1-aza-4,7-dithia-cyclononane, and the remaining two positions by two mutually *cis* dimethylformamide ligands.

Comment

The coordination chemistry of mixed thia–aza nine-membered macrocycles is of particular interest since the loss of threefold symmetry with respect to 1,4,7-triazacyclononane ([9]aneN₃) and the presence of both hard N- and soft S-donors can have interesting stereochemical consequences and thereby offer specific coordination selectivity (Danks *et al.*, 1998). Recently, we have reported on the coordination chemistry of nitrile and amino pendant arm derivatives of 1,4-diaza-7-thiacyclononane ([9]aneN₂S) and 1-aza-4,7-dithiacyclononane ([9]aneN₂S) with Pd^{II} and Cu^{II} (Arca *et al.*, 2003). A distorted square-pyramidal coordination is generally observed at these metal centres with 3-aminopropyl pendant arm derivatives of [9]-aneN₂S and [9]aneNS₂ which show strong basal coordination of the N-donors of the macrocycle and of the primary amine group(s).

We report here the X-ray crystal structure of the title Ni^{II} complex, (I), obtained by reacting the 3-aminopropyl pendant arm derivative of [9]aneNS₂ with NiCl₂ in MeOH/H₂O followed by addition of excess sodium tetraphenylborate. Crystals were obtained by diffusion of Et₂O vapour first into a solution of acetonitrile and subsequently into a solution of the resulting solid in dimethylformamide. The metal centre is in a distorted octahedral geometry (Fig. 1) with two positions occupied by mutually *cis* dimethylformamide ligands and the remaining four by the two N- and two S-donor atoms of the pendant-arm macrocyclic ligand. The Ni–O and Ni–NH₂ bond lengths (Table 1) are both slightly shorter than the Ni– N4 distance which involves the tertiary macrocyclic N-donor.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the title cation, with displacement ellipsoids drawn at the 30% probability level. The two counter-anions and two solvent molecules are not shown, and H atoms have been omitted for clarity.

This leads to a trigonal elongation of the octahedron towards the triangular face formed by three of the macrocyclic donors. The S-donor *trans* to the NH_2 group lies slightly further from the metal than the one *trans* to the dimethylformamide donor O1.

Experimental

A solution of the ligand (30 mg, 0.136 mmol) and NiCl₂ (17.63 mg, 0.136 mmol) in MeOH/H₂O (10 ml, 1:1 ν/ν) was refluxed for 1 h. Excess sodium tetraphenylborate was added and a purple solid formed. Purple crystals were obtained as follows: first, Et₂O vapour was diffused into a solution of this solid in acetonitrile and a solid product isolated; second, this solid was dissolved in dimethylform-amide and Et₂O vapour diffused into the solution (yield 51.7 mg, 33%). Found (calculated for C₆₇H₈₀B₂N₆NiO₂S₂): C 70.33 (70.23), H 6.98 (7.04), N 7.15% (7.33%).

Crystal data

$[Ni(C_3H_7NO)_2(C_9H_{20}N_2S_2)]$ -	$D_x = 1.231 \text{ Mg m}^{-3}$
$(C_{24}H_{20}B)_2 \cdot 2C_2H_3N$	Mo $K\alpha$ radiation
$M_r = 1145.82$	Cell parameters from 33
Monoclinic, $P2_1/n$	reflections
a = 20.907 (4) Å	$\theta = 26-34^{\circ}$
b = 11.951 (4) Å	$\mu = 0.43 \text{ mm}^{-1}$
c = 26.516(5) Å	T = 150 (2) K
$\beta = 111.06 \ (3)^{\circ}$	Irregular block, purple
$V = 6183 (3) \text{ Å}^3$	$0.39 \times 0.39 \times 0.31$ mm
Z = 4	
Data collection	

 $\theta_{\rm max} = 25.0^{\circ}$ Stoe Stadi-4 diffractometer $h = -24 \rightarrow 24$ $\omega - \theta$ scans Absorption correction: ψ scan $k = 0 \rightarrow 14$ (X-RED32; Stoe & Cie, 1996) $l = -31 \rightarrow 31$ $T_{\rm min}=0.741,\ T_{\rm max}=0.876$ 3 standard reflections 12472 measured reflections every 60 reflections 10898 independent reflections intensity decay: random variation 8397 reflections with $I > 2\sigma(I)$ $\pm 5\%$ $R_{\rm int} = 0.040$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.122P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.069$	+ 7.311 <i>P</i>]
$wR(F^2) = 0.205$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.003$
10898 reflections	$\Delta \rho_{\rm max} = 1.25 \text{ e } \text{\AA}^{-3}$
731 parameters	$\Delta \rho_{\rm min} = -0.73 {\rm e} {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Ni-S1	2.4119 (12)	S1-C2	1.830 (4)
Ni-S7	2.3917 (14)	S1-C9	1.805 (4)
Ni-O1	2.057 (3)	S7-C6	1.812 (4)
Ni-O2	2.086 (3)	S7-C8	1.827 (4)
Ni-N4	2.141 (4)	O1-C14	1.231 (5)
Ni-N13	2.073 (3)	O2-C18	1.232 (5)
S1-Ni-S7	87.66 (5)	O2-Ni-N13	88.61 (12)
S1-Ni-O1	91.47 (8)	N4-Ni-N13	94.77 (12)
S1-Ni-O2	89.78 (8)	Ni-S1-C2	96.27 (12)
S1-Ni-N4	86.83 (8)	Ni-S1-C9	100.88 (13)
S1-Ni-N13	178.23 (11)	C2-S1-C9	102.67 (19)
S7-Ni-O1	176.09 (9)	Ni-S7-C6	93.35 (14)
S7-Ni-O2	93.46 (8)	Ni-S7-C8	103.56 (13)
S7-Ni-N4	87.46 (9)	C6-S7-C8	103.13 (19)
S7-Ni-N13	93.17 (9)	Ni-O1-C14	129.2 (2)
O1-Ni-O2	90.35 (11)	Ni-O2-C18	127.2 (3)
O1-Ni-N4	88.68 (12)	Ni-N4-C3	106.5 (2)
O1-Ni-N13	87.81 (11)	Ni-N4-C5	112.5 (2)
O2-Ni-N4	176.45 (10)	Ni-N13-C12	117.4 (2)

The two MeCN solvent molecules were affected by disorder. In one molecule, the components were each half-occupied while the other clearly had major and minor occupancies of 0.694 (19) and 0.306 (19), respectively. Restraints were applied to the C-C, C=N and 1,3-C···N distances. Restraints for planarity, local $C_{2\nu}$ symmetry and similarity were applied to and between the phenyl rings. Methyl H atoms were located from ΔF syntheses while all other H atoms were placed geometrically. Methyl H atoms were refined as part of rigid rotating groups, with C-H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were refined using a riding model, with N-H = 0.92 Å, C-H(sp^2 and aryl) = 0.95 and C-H(methylene) = 0.99 Å, and with $U_{iso}(H) = 1.2U_{eq}(N,C)$. The maximum electron-density peak lies 1.25 Å from atom C18.

Data collection: *Stadi*-4 (Stoe & Cie, 1996); cell refinement: *Stadi*-4; data reduction: *X-RED*32 (Stoe & Cie, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004) and *PLATON*.

We thank EPSRC for funding the purchase of the diffractometer.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Arca, M., Blake, A. J., Lippolis, V., Montesu, D. R., McMaster, J., Tei, L. & Schröder, M. (2003). *Eur. J. Inorg. Chem.* pp. 1232–1241.

Danks, J. P., Champness, N. R & Schröder, M. (1998). Coord. Chem. Rev. 166, 1–80.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (1996). Stadi-4 and X-RED32. Stoe & Cie, Darmstadt, Germany.